Solving parabolic stochastic partial differential equations via averaging over characteristics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving parabolic stochastic partial differential equations via averaging over characteristics

The method of characteristics (the averaging over the characteristic formula) and the weak-sense numerical integration of ordinary stochastic differential equations together with the Monte Carlo technique are used to propose numerical methods for linear stochastic partial differential equations (SPDEs). Their orders of convergence in the mean-square sense and in the sense of almost sure converg...

متن کامل

Postprocessing for Stochastic Parabolic Partial Differential Equations

We investigate the strong approximation of stochastic parabolic partial differential equations with additive noise. We introduce post-processing in the context of a standard Galerkin approximation, although other spatial discretizations are possible. In time, we follow [20] and use an exponential integrator. We prove strong error estimates and discuss the best number of postprocessing terms to ...

متن کامل

Solving partial differential equations via sparse SDP

To solve a partial differential equation (PDE) numerically, we formulate it as a polynomial optimization problem (POP) by discretizing it via a finite difference approximation. The resulting POP satisfies a structured sparsity, which we can exploit to apply the sparse SDP relaxation of Waki, Kim, Kojima and Muramatsu [20] to the POP to obtain a roughly approximate solution of the PDE. To comput...

متن کامل

Moving Mesh Methods for Solving Parabolic Partial Differential Equations

In this thesis, we introduce and assess a new adaptive method for solving non-linear parabolic partial differential equations with fixed or moving boundaries, using a moving mesh with continuous finite elements. The evolution of the mesh within the interior of the spatial domain is based upon conserving the distribution of a chosen monitor function across the domain throughout time, where the i...

متن کامل

Numerical Approximation of Parabolic Stochastic Partial Differential Equations

The topic of the talk were the time approximation of quasi linear stochastic partial differential equations of parabolic type. The framework were in the setting of stochastic evolution equations. An error bounds for the implicit Euler scheme was given and the stability of the scheme were considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2009

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-09-02250-9